A leading institution at the heart of the digital society

Storing and reviving databases on synthetic DNA

Raja Appuswamy

EURECOM

(in collaboration with members of EU FET OligoArchive and Danish National Archive)

"50% of 175ZB global datasphere will be enterprise data in 2025" [IDC]

"80% data is cold, and increasing at 60% CAGR" [Horison]

Current tape-based archival suffers from fundamental limitations

Continuous data migration with tape

"60% of archival data stored longer than 20 years" [SNIA 100 Year Archive]

Media decay

Media obsolescence

	Tape Drives				
Version	LTO-6	LTO-5	LTO-4	LTO-3	LTO-2
LTO6	neuoj mne				
LTO6 WORM	Read/Write				
LTO5	Read/Write	Read/Write			
LTO5 WORM	Read/Write	Read/Write			
LTO4	Read	Read/Write	Read/Write		
LTO4 WORM	Read	Read/Write	Read/Write		
LTO3		Read	Read/Write	Read/Write	
LTO3 WORM		Read	Read/Write	Read/Write	
LTO2			Read	Read/Write	Read/Write
LTO1				Read	Read/Write
Cleaning Tape	Supported	Supported	Supported	Supported	Supported

28 Apr 2017 | 15:00 GMT

The Lost Picture Show: Hollywood Archivists Can't Outpace Obsolescence

Studios invested heavily in magnetic-tape storage for film archiving but now struggle to keep up with the technology

By Marty Perlmutter

"There's going to be a large dead period," he told me, "from the late '90s through 2020, where most media will be lost."

DNA as a digital storage media

Why DNA

Figure 1.2: The volumetric information density of conventional storage media vs. DNA 1.00E+10 1.00E+09 1.00E+08 1.00E+07 1.00E+06 Potential of DNA: 10' improvement 1.00E+05 Gbit/mm³ 1.00E+04 1.00E+03 1.00E+02 1.00E+01 1.00E+00 1.00E-01 1.00E-02 Optical HDD Tape Flash DNA Today Projection 📕 Limit

Woolly mammoth on verge of resurrection, scientists reveal

Scientist leading 'de-extinction' effort says Harvard team could create hybrid mammoth-elephant embryo in two years

<u>Project Oligoarchive focuses on using</u> DNA as an intelligent storage medium

Application Layer

Encoding structured (database) and unstructured (imaging) data

OS Layer Advanced access paths (block, fs, ...)

Controller Layer Near-molecule query processing

Media Layer Synthesis and Sequencing


```
- p 5
```

Database archival/preservation with DNA

Challenges in using DNA as a storage medium

Conceptual mapping: 00-A, 01-T, 10-C, 11-G

- > 2 bits per nucleotide
- Cannot be used in practice

Each DNA is limited to a few hundred nucleotides

- For 300nt DNA strand, 600 bits can be stored
- Data spread out across millions of DNA strands

Not all DNA are created equal

G-C content limitations, homopolymers (AAAA)....

DNA has no addressing

Need to reserve some nucleotides for ordering information

Synthesis (writing) and sequencing (reading) errors

Biochemical steps introduce substitution, insertion, deletion errors

DNA archival & restoration: Challenges

- Each DNA is limited to a few hundred nucleotides
 - Data spread out across millions of DNA
- Not all DNA are created equal
 - G-C content limitations, homopolymers
- DNA has no addressing
 - Need to add ordering information in DNA

DNA4DNA Collaboration: Synthetic DNA and the Danish National Archives

Third largest academic DNA storage experiment

- > 200MB (Microsoft/UW), 22MB (Blawat et al.)
- Storage density :1.73 bits/nt

Devil's Advocate: Open Problems

Price: DNA synthesis is 10⁷ times more expensive than tape (10\$/TB for tape vs 100M\$/TB for DNA)

Novel synthesis techniques under research

Automation, performance of synthesis and sequencing

- Synthesis/sequencing is labor intensive and slow
- DNA throughput O(Kb/s) compared to tape's MB/s

DNA does not solve media/format obsolescence

- SIARD helps with format obsolescence
 - What about non-standard formats?
- Who preserves the decoder (media obsolescence)?
 - Ongoing collab. with EUPALIA on emulation + DNA storage

Conclusion

Contemporary magnetic media suffers from limited lifetime

Continuous migration complicates long-term archival

DNA provides a biological alternative

Dense, durable, eternal relevance

DNA does not solve all problems

- Need cheap synthesis & scalable, end-to-end automation
- Can synergistically combine {standards + emulation + DNA storage} for an end-to-end solution

Reach out for collaboration on database archival

